Respite Documentation
Release 1.4.0

Johannes Gorset

September 27, 2017

Contents

1 About 1
2 Installation 3
3 Documentation 5
31 OVEIVIEW . . o o ot e s e e e e e e e 5
3.2 Usagedocumentation it e e e 5
4 Development 11

Python Module Index 13

CHAPTER 1

About

Respite conforms Django to Representational State Transfer (and, incidentally, HTTP).

Respite Documentation, Release 1.4.0

2 Chapter 1. About

CHAPTER 2

Installation

Stable releases of Respite are distributed via the python package index. See the installation page for detailed instruc-
tions.

Respite Documentation, Release 1.4.0

4 Chapter 2. Installation

CHAPTER 3

Documentation

Overview

If you’re new to Respite, please see the overview-and-tutorial for an introduction. The rest of the documentation will
assume you're at least passingly familiar with the material contained within.

Usage documentation

Respite’s usage documentation expands upon the concepts outlined in the overview-and-tutorial.

Decorators
respite.decorators.before (method_name)
Run the given method prior to the decorated view.

If you return anything besides None from the given method, its return values will replace the arguments of the
decorated view.

If you return an instance of Ht t pRe sponse from the given method, Respite will return it immediately without
delegating the request to the decorated view.

Example usage:
class ArticleViews (Views) :
@before (' _load’)

def show(self, request, article):
return self._render (

request = request,
template = ’show’,
context = {

"article’: article

def _load(self, request, id):
try:
return request, Article.objects.get (id=id)
except Article.DoesNotExist:
return self._error (request, 404, message=’The article could not be found.’)

Respite Documentation, Release 1.4.0

Parameters method — A string describing a class method.
respite.decorators.override_supported_formats (formats)
Override the views class’ supported formats for the decorated function.

Arguments: formats — A list of strings describing formats, e.g. [“html’, ’json’].

Routing
Respite connects views to URLs through resource declarations, each of which define routes for a particular collec-
tion of views.

respite.urls.resource (views, routes, prefix="")
Route a collection of views.

Parameters
» views — A reference to the class that defines the views.
* routes — A list of routes.

* prefix — A string to prefix the routes by, or ’/ * by default.

urlpatterns = resource (
prefix = ’posts/’,
views = PostViews,
routes = [
]
)
Routes

There are two ways in which you might populate the resource’s routes: you can declare them inline using the route
function, or reference views that have been decorated with the route decorator.

Inline routes

respite.urls.routes.route (regex, view, method, name)
Route the given view.

Parameters
* regex — A string describing a regular expression to which the request path will be matched.
* view — A string describing the name of the view to delegate the request to.
* method — A string describing the HTTP method that this view accepts.
* name — A string describing the name of the URL pattern.

regex may also be a lambda that accepts the parent resource’s pre fix argument and returns a string describ-
ing a regular expression to which the request path will be matched.

name may also be a lambda that accepts the parent resource’s views argument and returns a string describing
the name of the URL pattern.

6 Chapter 3. Documentation

Respite Documentation, Release 1.4.0

urls.py

urlpatterns = resource (
prefix = ’posts/’,
views = PostViews,
routes = [

Route GET requests to ’posts/’ to the ’index’ view.
routes.route (

regex = r’ " (?:$|index (?:\.[a-zA-Z]+)7?S)",
view = ’index’,

method = "GET’,

name = ’'blog_posts’

)
Route GET requests ’posts/1’ to the ’show’ view.

routes.route (
regex = r’/ " (?P<id>[0-9]+) (?:\.[a-zA-Z]+)2$",

view = ’show’,
method = "GET’,
name = ’"blog_post’

Referenced routes

respite.decorators.route (regex, method, name)
Route the decorated view.

Parameters
* regex — A string describing a regular expression to which the request path will be matched.
* method — A string describing the HTTP method that this view accepts.
* name — A string describing the name of the URL pattern.

regex may also be a lambda that accepts the parent resource’s pre fix argument and returns a string describ-
ing a regular expression to which the request path will be matched.

name may also be a lambda that accepts the parent resource’s views argument and returns a string describing
the name of the URL pattern.

views.py

class PostViews:

@route (
regex = r’ " (?:$|index (?:\.[a-zA-Z]+)2S%)",
method = "GET’,
name = ’"blog_posts’

)
def index (request):

@route (
regex = r’ " (?P<id>[0-9]+) (?:\.[a-zA-2Z]+)72S",
method = "GET’,
name = "blog_post’

3.2. Usage documentation 7

Respite Documentation, Release 1.4.0

def show (request, id):

urls.py

urlpatterns = resource (
prefix = ’posts/’,
views = PostViews,
routes = [

PostViews.index.route,
PostViews.show.route

Views

In Respite, views are encapsulated in classes according to the model they supervise. You are not required to subclass

Respite’s Views class, but doing so will yield some things you might find useful:

class respite.Views
Base class for views.

Attribute template_path A string describing a path to prefix templates with, or ’ / by default.

Attribute supported_formats A list of strings describing formats supported by these views, or

["html’] by default.

_render (request, template=None, status=200, context={}, headers={}, prefix_template_path=True)

Render a HTTP response.
Parameters

* request — A django.http.HttpRequest instance.

* template — A string describing the path to a template.
* status — An integer describing the HTTP status code to respond with.

* context — A dictionary describing variables to populate the template with.

* headers — A dictionary describing HTTP headers.

* prefix_template_path — A boolean describing whether to prefix the template with the

view’s template path.

Please note that template must not specify an extension, as one will be appended accord-
ing to the request format. For example, a value of blog/posts/index would populate
blog/posts/index.html for requests that query the resource’s HTML representation.

If no template that matches the request format exists at the given location, or if template is None,
Respite will attempt to serialize the template context automatically. You can change the way your models

are serialized by defining serialize methods that return a dictionary:

class NuclearMissile (models.Model) :
serial_number = models.IntegerField()
is_armed = models.BooleanField()
launch_code = models.IntegerField()

def serialize(self):
return
"serial_number’: self.serial_number,

Documentation

Respite Documentation, Release 1.4.0

"is_armed’ : self.is_armed

}

If the request format is not supported by the view (as determined by the supported_formats property
or a specific view’s override_supported_formats decorator), this function will yield HTTP 406
Not Acceptable.

Default views

Respite defines a collection of views that facilitate for common features like viewing a list of items, viewing a specific
item by its id, rendering a form to create a new item and so on. You can leverage these views by adding Respite’s
Resource class to the base classes of your views class:

class PostViews (Views, Resource) :
model = Post
template_path = "posts/’
supported_formats = ["html’, ’Json’]

class respite.Resource
A collection of views that facilitate for common features.
Attribute model A reference to a model.
Attribute form A reference to a form, or None to generate one automatically.

index (request)
Render a list of objects.

show (request, id)
Render a single object.

new (request)
Render a form to create a new object.

create (request)
Create a new object.

update (request, id)
Update an object.

replace (request, id)
Replace an object.

destroy (request, id)
Delete an object.

Resource automatically generates routes for each of its views and names them appriopriately. In our example, the
following routes would be generated:

HTTP path | HTTP method | View Name
posts/ GET index posts
posts/ POST create posts
posts/new GET new new_post
posts/1 GET show post
posts/l/edit | GET edit edit_post
posts/1 PUT replace | post
posts/1 PATCH update | post
posts/1 DELETE destroy | post

3.2. Usage documentation 9

Respite Documentation, Release 1.4.0

10 Chapter 3. Documentation

CHAPTER 4

Development

Please see the development page for comprehensive information on contributing to Respite.

11

Respite Documentation, Release 1.4.0

12 Chapter 4. Development

Python Module Index

r

respite.decorators,5

13

Respite Documentation, Release 1.4.0

14 Python Module Index

Index

Symbols

_render() (respite.Views method), 8

B

before() (in module respite.decorators), 5

C

create() (respite.Resource method), 9

D

destroy() (respite.Resource method), 9

index() (respite.Resource method), 9

N

new() (respite.Resource method), 9

O

override_supported_formats() (in
respite.decorators), 6

R

replace() (respite.Resource method), 9
Resource (class in respite), 9

resource() (in module respite.urls), 6
respite.decorators (module), 5

route() (in module respite.decorators), 7
route() (in module respite.urls.routes), 6

S

show() (respite.Resource method), 9

U

update() (respite.Resource method), 9

V

Views (class in respite), 8

module

15

	About
	Installation
	Documentation
	Overview
	Usage documentation

	Development
	Python Module Index

